USN

First/Second Semester B.E. Degree Examination, June 2012

Basic Electrical Engineering

Time: 3 hrs. Max. Marks:100

Note: 1. Answer any FIVE full questions, choosing at least two from each part.

- 2. Answer all objective type questions only on OMR sheet page 5 of the answer booklet.
- 3. Answer to objective type questions on sheets other than OMR will not be valued.

PART - A

- 1 a. Choose your answers for the following:
 - i) The current in 5 ohm resistor is

Fig.Q1(a)(i)

- A) 2A
- B) 3A
- C) 1AD) 1.5A
- ii) The total resistance of parallel circuit is
 - A) less than the smallest resistance
- B) more than the smallest resistance
- C) more than the highest resistance
- D) none of these
- iii) Inductance opposes _____ in current in a circuit.
 - A) only increase
- B) only decrease
- C) change
- D) none of these
- iv) If coefficient of coupling between two coils is increased, mutual inductance between the coils _____.
 - A) is increased

B) is decreased

C) remains unchanged

- D) none of these
- (04 Marks)
- b. List out advantages of parallel circuit over series circuit. List out characteristics of parallel circuit. (06 Marks)
- c. Deduce an expression for stored energy in a magnetic field.

- (04 Marks)
- d. Find current in the battery, the current in each branch and p.d. across AB in the network shown in Fig.Q1(d). (06 Marks)

Fig.Q1(d)

- 2 a. Choose your answers for the following:
 - i) A coil is rotating in the uniform field of a 10-pole generator. In one revolution of the coil, the number of cycles generated by voltage is _____.
 - A) 10
- B) 5

- C) 2.5
- D) 4
- ii) The average value of sine wave over a one complete cycle is
 - A) zero
- B) +1
- C) -1

1 of 4

- D) $\frac{1}{2}$
- iii) The voltage of the applied source in the circuit of fig.Q2(a)(iii) is

A) 50 V

B) 100 VC) 40 V

D) 140 V

			10111111123				
2	a	iv) The power taken by the circuit show	vn is				
			A) 480 W				
		\$ 2 8	B) 1920 W				
		240x 32 \$ 1=305	C) 1200 W				
		240x 3 x We=3052 Fi	D) none of these (04 Marks)				
	b.	<u>. </u>	asor diagram, find the phase angle, impedance and				
		power in case of R-L series circuit. (08 Marks					
	c.	An alternating current of frequency 60 Hz					
		i) Write down equation for the instantaneous value.ii) Reckoning time from the instant the current is zero and becoming positive, fin					
		instantaneous value after 1/360 sec.					
		iii) Time taken to reach 96 A for the fir					
	d.	A 60 Ω resistor is connected in parallel	with an inductive reactance of 80 Ω to a 240 V,				
	50 Hz supply. Calculate: i) The current through the resistor and inductance, ii) The current, iii) The circuit phase angle. Draw phasor diagram. (04						
3	a.	Choose your answers for the following:					
	٠.	•	an impedance of 17.7 Ω are connected in star. The				
		- ·	V, 50 Hz supply. The current (line) drawn by the				
		circuit is equal to					
		A) 22.6 A B) 39.14 A	C) 13 A D) none of these				
			ed circuit having inductive load, the angle between				
		the line currents and corresponding					
		A) 30° B) $30^{\circ} - \phi$, , , , , , , , , , , , , , , , , , , ,				
iii) When two wattmeters are connected in a 3-phase circuit to measure it							
	consumption, one of the wattmeter would read zero, when the load power factor A) 0.2 lagging B) unity C) 0.5 lagging D) zero						
		iv) Active power drawn by a 3-phase b	, 66 6				
		A) $P = V_L I_L \cos \phi$	B) $P = \sqrt{3} V_L I_L$				
		C) $P = \sqrt{3} V_L I_L \cos \phi$	D) $P = \sqrt{3} V_{ph} I_{ph} \cos \phi$ (04 Marks)				
	b.	·	the relationship between the line and phase values				
	of voltages in a three-phase, star connected system.						
	c. The three arms of a three-phase load each comprise an inductor of resistance						
			uF capacitor. The supply voltage is 415 V, 50 Hz.				
	Calculate the line current and total power in watts, when the three arms are con						
		delta.	(08 Marks)				
4	a.	Choose your answers for the following:					
		i) The type of wattmeter commonly u	sed for measurement of power in ac circuit is				
		A) rectifier type	B) dynamometer type				
		C) moving iron typeii) In energy meter, constant speed of	D) thermo-couple type				
		rotation of disc is provided by					
		A) shunt magnetC) braking magnet	B) series magnet D) none of these				
		iii) Earthing of electrical installation is	,				
		A) equipments from damage	B) personnel against electric shock				
		C) equipments from short circuit	D) all of these				
	iv) The effect of electric current on vital human organs depends upon						
		A) magnitude of current	B) duration of current				
		C) frequency of current	D) all of these (04 Marks)				

4	b. c. d.						
			$\underline{PART} - \underline{B}$				
5	a.	 i) The rotating part of d.c. A) armature E ii) E.M.F. of d.c. machine A) flux/pole C) conductors iii) Torque in d.c. motor is A) only flux C) both flux and Ia iv) At the moment of starting 	machine is called	C) frame onal to B) poles D) number of paral B) only I _a D) none of these ack emf is	-		
	b. c. d.	Derive e.m.f. equation of a d. Explain the principle of torqu	e production in d.c. mature has 40 slots	with 12 conductors	-		
6	a.	 i) Which of the following A) voltage E ii) A transformer has full I no load will be approxing A) 1400 Watts E iii) The efficiency of a translead is A) 99% E iv) A single phase transfor winding. If the primary supply, the voltage industrial 	does not change in a 3) current oad copper loss of 8 mately. 3) 1100 Watts asformer at fuel load 3) 95.5% mer has 250 turns or y winding is connected.	C) frequency 00 W and core loss of C) 1000 Watts 0.8 pf lag is 95%. TC) 95% a primary and 1000 pted across a 230 V	D) all of these of 600 W. Total loss at D) 600 Watts The efficiency at 0.8 pf D) 90% turns on the secondary		
	b. c.	Explain briefly the principle the primary and secondary wi	of operation of transaction of operation of transaction of transaction of transaction of transaction of transaction of transaction of the same as a subject of the same of the	sformer and show their turns ratio. s copper loss is 1200 or	and show that the voltage ratio of s ratio. (08 Marks) oss is 1200 W and its iron loss is		
7	a.	i) The frequency of volta 250 rpm is	age generated by an		_		
		A) 60 Hz	3) 50 Hz	C) 25 Hz	D) $16\frac{2}{3}$ Hz		

7 a. ii) In modern alternators, the rotating part is								
			A) field	B) armature				
			C) field and armature	D) none of these				
		iii)	An alternator has a phase sequence of RY	B for its phase voltage. In cas	e the direction			
	of rotation of alternator is reversed, the phase sequence will become							
			A) RBY	B) RYB				
			C) YRB	D) none of these				
		iv)	as to					
			A) increase machine rating	B) improve the voltage way	eform			
			C) improve generated voltage	D) none of these	(04 Marks)			
	b.							
	c.	Derive e.m.f equation of an alternator. (06 Marks)						
	d.	d. A 3-phase, 6-pole, star connected alternator revolves at 1000 rpm. The stator has 90 s						
		and 8 conductors per slot. The flux per pole is 0.05 wb. Calculate voltage gene						
	$K_{W} = 0.96.$				(06 Marks)			
		G!						
8 a. Choose your answers for the following:								
	i) The speed at which the rotating magnetic field produced by stator curr							
			A) synchronous speedC) greater than synchronous speed	B) rotor speed D) none of these				
		ii)	When an induction motor is at standstill it	•	•,			
		•••	A) zero B) 0.5	C) 1 D) infi	•			
		iii) If N _S is synchronous speed and 's' is the slip, then the actual running speed						
			induction motor will be		1)			
			A) N_S B) sN_S	C) $(1-s)N_S$ D) (N_S)	,			
		iv) Initial starting current drawn by a 3-phase induction motor in terms of full load curren						
		on application of rated voltage (approximately) is:						
			A) equal to full load current	B) 2 times	(0435.1)			
	1	г	C) more than 10 times	D) 5 times (appx)	(04 Marks)			
	b.							
	c.	1 7						
	d.	1 , 1 ,						
		Determine: i) synchronous speed, ii) no-load speed, iii) full load speed, iv) frequency of						
		rotor at stand still, v) frequency of rotor current at full load. (06 Mar						

* * * * *